REFORMING U.S. PATENT LAW TO ENABLE ACCESS TO ESSENTIAL MEDICINES IN THE ERA OF ARTIFICIAL INTELLIGENCE

Elif Kavusturan
Suffolk University

Follow this and additional works at: https://scholarlycommons.law.northwestern.edu/njtip

Recommended Citation
Elif Kavusturan, REFORMING U.S. PATENT LAW TO ENABLE ACCESS TO ESSENTIAL MEDICINES IN THE ERA OF ARTIFICIAL INTELLIGENCE, 18 NW. J. TECH. & INTELL. PROP. 51 (2020).
https://scholarlycommons.law.northwestern.edu/njtip/vol18/iss1/2

This Article is brought to you for free and open access by Northwestern Pritzker School of Law Scholarly Commons. It has been accepted for inclusion in Northwestern Journal of Technology and Intellectual Property by an authorized editor of Northwestern Pritzker School of Law Scholarly Commons.
REFORMING U.S. PATENT LAW TO ENABLE ACCESS TO ESSENTIAL MEDICINES IN THE ERA OF ARTIFICIAL INTELLIGENCE

Elif Kavusturan, S.J.D.
REFORMING U.S. PATENT LAW TO ENABLE ACCESS TO ESSENTIAL MEDICINES IN THE ERA OF ARTIFICIAL INTELLIGENCE

ELIF KAVUSTURAN, S.J.D.

ABSTRACT—The patent system has long been criticized for limiting access to pharmaceuticals. Patents grant inventors a limited period of exclusivity with an attempt to allow recoupment of investments in the invention process. In the pharmaceutical industry, this exclusivity and the resulting lack of competition leads to exorbitant prices. High prices limit access to potentially life-saving medicines and hinder achievement of the “highest attainable standard of health,” which several international instruments recognize as a human right.

The pharmaceutical industry claims patents are essential to encourage innovation in risky, lengthy and costly research and development (R&D) processes. But it has yet to put forward indisputable evidence to the actual effects of patents on innovation.

Increasing use of artificial intelligence (AI) in research intensifies the existing debates on pharmaceutical patents. Inventions created or enabled by AI raise questions about patentability and patent policy in general. Faster and more efficient R&D weakens justifications for pharmaceutical patents.

While continued incentivization is essential, lawmakers must consider alternative systems, which prioritize access alongside incentivization in order to advance health care as a human right. One way to increase access while maintaining the necessary incentives for innovation is to reform standards of patentability, leaving some essential medicines enabled by AI outside the sphere of patent protection, and fund R&D through prize funds and tax incentives in the absence of patents. Alternatively, a shorter exclusivity term, followed by a licensing period allowing competitors to make and sell the related medicines against a licensing fee, will enable competing products to enter the market earlier and drive prices down and provide innovating companies a method to recoup investments.
INTRODUCTION

“[A]nd supporting their master were attendants made of gold, which seemed like living maidens. In their hearts there is intelligence, and they have voice and vigor, and from the immortal gods they have learned skills.”

Robotic handmaidens helped Vulcan in his workshop in Homer’s Iliad. The handmaidens resembled people and had knowledge, sense, and reason. Twenty-eight centuries later, robot scientists and artificial intelligence (AI) systems aid researchers in the lab, much like Vulcan’s handmaidens.

While AI has not reached human level intelligence yet, it is already reshaping industries.¹ One of the fields that stands to benefit the most from

¹ Homer, The Iliad 137 (Caroline Alexander trans., HarperCollins 2016).
² See, e.g., Ying Chen, Elenee Argentinis & Griff Weber, IBM Watson: How Cognitive Computing Can Be Applied to Big Data Challenges in Life Sciences Research, 38 CLINICAL THERAPEUTICS 688, 698 (2016); Kevin Williams et al., Cheaper Faster Drug Development Validated by the Repositioning of Drugs Against Neglected Tropical Diseases, J. ROYAL SOC’Y INTERFACE, Mar. 6, 2015, at 1, 2.
AI is health care. AI has the potential to decrease the time it takes for pharmaceutical companies to research, develop, and bring new drugs to market. AI will reduce the cost of pharmaceutical research and development (R&D) and increase the efficiency of the innovation process.

Patent rights enable patent holders to exclude others from making, using, offering for sale or selling their inventions during the patent term. This right of exclusion aims to “promote the progress of science and useful arts.” According to the Supreme Court, the right serves to compensate inventors for their labor and expenses in bringing inventions to practice and disclosing them to the public. Under the existing “one-size-fits-all” system, all inventions that satisfy the standards of patentability are eligible for patent protection, without regard to their social effects, their costs, or the technologies used in the innovation process.

Patents allow patent holders to operate without competition, thus enabling higher prices.
High prices are especially problematic in the pharmaceutical industry. Consumers in the United States pay more for pharmaceuticals than consumers in any other country. A prescription worth $1,362 in the United Kingdom costs $2,669 in the United States. In 2017, 11.4 percent of patients prescribed drugs chose to forego treatment as a direct result of high prices, while 24.9 percent asked for a cheaper alternative or opted for alternative therapies.

Pharmaceutical companies cite lengthy and costly R&D to justify the high prices of pharmaceuticals, asserting high returns are necessary to incentivize innovation. However, the actual effects of patents on innovation are not clear, and studies showing the excessive investment requirements for pharmaceutical R&D have been widely criticized for inflating costs. AI’s potential to enable faster and cheaper drug development undermines the industry’s arguments for patent protection.

As AI starts to play a bigger role in R&D, patent law must be reformed to reflect AI’s effects on pharmaceutical innovation to recalibrate public and private interests. Lawmakers must address the disruption caused by AI in the pharmaceutical innovation process and evaluate alternative mechanisms that prioritize access to pharmaceuticals while providing the necessary incentives for pharmaceutical companies.

The chief reason why patent law must be reformed for AI-enabled pharmaceuticals is to advance health care as a human right. A number of international organizations recognize health as a human right.

16 See discussion infra Part II, Section C.3.

achieving health care as a human right, and aim to increase access to these pharmaceuticals in order to make sure that the human right to health is enjoyed by all.\(^{18}\)

This Article is structured in three parts. Part I defines AI and related concepts and demonstrates how technology is revolutionizing innovation. This Part illustrates increasing use of AI in pharmaceutical research and provides examples of cases where AI has reduced the length and cost of pharmaceutical R&D.

Part II provides a brief overview of the existing patent system and patentability issues arising from AI-enabled inventions. This Part also discusses the leading arguments for and against the existing patent system and evaluates issues specific to exclusivity rights in the pharmaceutical industry, as well as the controversy over the effects of the patent system as a method of incentivization for pharmaceutical R&D. This Part demonstrates how the patent system’s overemphasis on incentivization is limiting access to essential medicines and hindering the realization of health care as a human right, creating a health crisis as exorbitant prices deprive millions of essential medicines.

Part III presents alternative models to incentivize pharmaceutical innovation while increasing access to essential medicines. This Part critically assesses reforming standards of patentability, leaving some essential medicines developed utilizing AI outside the scope of patentability, and using prize funds and tax incentives to incentivize pharmaceutical innovation in the absence of patents. This Part also evaluates an alternative model that provides essential medicines enabled by AI with a shorter patent term, followed by a licensing scheme where the patent holder will allow competitors to make and distribute the products for a reasonable licensing fee in line with the related R&D costs.

I. AI REVOLUTIONIZING PHARMACEUTICAL INNOVATION

A. Defining Intelligence: Natural and Artificial

From the beginning of the twentieth century, the most popular method of quantifying human intelligence had been by the “intelligence quotient” or “IQ,” which represents a ratio of an individual’s mental age to their actual age.\(^{19}\) In the 1980s, an American psychologist offered a different approach

\(^{19}\) HOWARD GARDNER, MULTIPLE INTELLIGENCES: NEW HORIZONS 3 (2006); see also ANNA T. CIANCIOLI & ROBERT J. STERNBERG, INTELLIGENCE: A BRIEF HISTORY 30-55 (2004).
to intelligence. This so-called pluralistic view of the mind based human intelligence on various abilities and mental skills of the individual.

According to this approach, intelligence is “a computational capacity” entailing the ability to “solve problems or fashion products that are of consequence in a particular cultural setting or community.” Removing the human aspect from this definition, a good way to define intelligence would then be the “quality that enables an entity to function appropriately and with foresight in its environment.”

Experts in the field have not reached a consensus on a single definition for AI. John McCarthy, who was the first to use the term, defines it as “the science and engineering of making intelligent machines.” Others have defined it as the task of designing rational agents that maximize their expected utility given what they learn from their environment. For the purposes of this Article, AI can simply be defined as the science of creating machines and systems that are capable of understanding their environment and functioning accordingly.

20 GARDNER, supra note 19, at 6.
21 Id.
26 The United States has not yet adopted an official legal definition of AI. A 2017 bill defines AI systems broadly:

- **(A)** Any artificial systems that perform tasks under varying and unpredictable circumstances, without significant human oversight, or that can learn from their experience and improve their performance. Such systems may be developed in computer software, physical hardware, or other contexts not yet contemplated. They may solve tasks requiring human-like perception, cognition, planning, learning, communication, or physical action. In general, the more human-like the system within the context of its tasks, the more it can be said to use artificial intelligence.
- **(B)** Systems that think like humans, such as cognitive architectures and neural networks.
- **(C)** Systems that act like humans, such as systems that can pass the Turing test or other comparable test via natural language processing, knowledge representation, automated reasoning, and learning.
- **(D)** A set of techniques, including machine learning, that seek to approximate some cognitive task.
B. Machine Learning and Deep Learning

Depending on the purpose and capacity of an AI system, it may be categorized as weak or strong. Weak AI, also called narrow AI, is programmed to carry out a single task, and is not capable of solving problems outside of its field. A driverless car, for instance, is capable of driving autonomously. Yet, it cannot perform any other task. Strong AI, on the other hand, has the ability to think and reason autonomously. General AI is comparable to a human being in terms of “cognitive, emotional and social behavior.”

The ultimate aim of the field of AI is to create general AI, capable of “solve[ing] problems and achiev[ing] goals in the world as well as humans.” However, matching human abilities is not a necessary condition for a system to be considered intelligent. While incapable of performing diverse tasks, many existing systems exceed human performance in certain aspects, most notably in speed.

Until recently, so-called expert systems required scientists to supply inputs in the form of data and interpret the outputs offered by the system. To program these systems, programmers had to collaborate with experts from each field to learn the rules and decision-making criteria relating to the

(E) Systems that act rationally, such as intelligent software agents and embodied robots that achieve goals via perception, planning, reasoning, learning, communicating, decision making, and acting.

See UK-RAS NETWORK, supra note 27.

H.R. 4625.

McCarthy, supra note 24, at 5.

See ONE HUNDRED YEAR STUDY ON A.I., supra note 4, at 13.

Id.

RUSSELL & NORVIG, supra note 25, at 1044.
problem at hand. They would then translate these rules into code. Machine learning changed this burdensome approach.

Machine learning is a statistical process where the system autonomously derives rules and procedures from a set of data and comes up with explanations or predictions. The biggest advantage of machine learning is that it does not focus on solving a single problem but offers solutions to different problems based on available data. Machine learning operates by finding patterns in data and using these patterns to formulate and test hypotheses about the task at hand. Today, many commercial applications of AI use machine learning. Object identification in images, speech-to-text services, recommendation services, and search result customization are a few examples of machine learning in action. A significant benefit of machine learning is that it reduces costs and increases efficiency in decision-making processes. As such, machine learning is also a valuable tool to aid researchers in pharmaceutical innovation.

Deep learning is a sub-field of machine learning, which uses structures similar to the human brain. Deep learning networks are capable of recognizing complex and precise patterns in large datasets, by using layers and units referred to as “neurons,” in a manner that is similar to the operations of the human brain. With increased ability to interpret data, deep

36 Id.

38 See id. For a study of machine learning as a tool for mining chemical information for drug design, see Yu-Chen Lo et al., Machine Learning in Chemoinformatics and Drug Discovery, 23 DRUG DISCOVERY TODAY 1538, 1540–41 (2018).

39 See Benke & Benke, supra note 37, at 4–5.

41 NAT’L SCI. & TECH. COUNCIL COMMITTEE ON TECH., supra note 35, at 8.

43 Martens, supra note 6, at 7.

44 Lo et al., supra note 38, at 1538.

46 Id. at 9–10.
learning outperforms machine learning techniques in image and speech recognition, as well as predicting the activities of potential drug molecules.47

C. AI in Pharmaceutical R&D

Medicine and health care stand to benefit substantially from AI.48 AI is used in the health care industry for such purposes as enhancing the capabilities, know-how, and expertise of doctors and medical professionals, helping monitor patients’ conditions in a constant and comprehensive manner, increasing quality of life for people with certain diseases or disabilities, predicting diseases, and customizing treatments.49 AI systems

47 LeCun et al., supra note 42, at 436.

are also used in various stages of the drug development process, ranging from initial drug screening to designing clinical trials.\(^5\)

The pharmaceutical industry is the most research-intensive industry in the United States.\(^5\) Researchers alone, however, are limited in their capacity to innovate in an efficient and rapid manner.\(^5\) AI improves performance and decreases costs of R&D.\(^5\) Pharmaceutical companies use AI to enhance R&D capabilities, increase efficiency, and decrease the time and investment required by the drug development process.\(^5\)

Machine learning is most commonly used in drug discovery\(^5\) to aid researchers in understanding relationships between chemicals and their activities.\(^5\) Deep learning algorithms are capable of processing vast amounts of data to make accurate predictions about the effects of molecules.\(^5\) These predictions help researchers focus on a smaller number of drug candidates

\(^5\) See Rotman, supra note 5 (discussing the reasons for declining productivity in research in the recent years, and how technology companies are trying to use AI to increase R&D productivity to overcome problems with research, including efforts to shorten research time).

\(^5\) Cockburn et al., supra note 3, at 7.

\(^5\) See Nic Fleming, *Computer-Calculated Compounds*, 557 NATURE S55, S55 (2018) (indicating that the likes of Pfizer and Sanofi invest in AI and that if advocates are right in their claims, AI will help achieve the goal of “quicker, cheaper and more-effective drug discovery”); Ben Hirschler, *Big Pharma Turns to AI to Speed Drug Discovery, GSK Signs Deal*, REUTERS (July 1, 2017, 8:10 PM), https://www.reuters.com/article/us-pharmaceuticals-ai-gsk/big-pharma-turns-to-ai-speed-drug-discovery-gsk-signs-deal-idUSKBN19N003 [https://perma.cc/3UFC-YDU] (reporting that a GlaxoSmithKline (GSK) executive expects an in-house system will decrease the time it takes to find a target for disease intervention and identify a molecule fighting it from its current average of 5.5 years to one year, and chief executive of Exscientia claims that their AI system can deliver drug candidates in roughly twenty-five percent of the time and cost of traditional approaches); Bryn Nelson, *Why Big Pharma and Biotech are Betting Big on AI*, NBC NEWS (Mar. 1, 2018, 11:58 AM), https://www.nbcnews.com/mach/science/why-big-pharma-betting-big-ai-ncna852246 [https://perma.cc/MH24-LY73] (reporting that AI groups are aiming to cut down the initial stage of pharmaceutical research, which consists of identifying a disease target and testing drug candidates against that target, from its current time of four to six years to one year); Rotman, supra note 5 (claiming that deep learning has the potential to speed up the process of finding drug candidates, which is a critical and lengthy portion of the drug development process).

\(^5\) Lo et al., supra note 38, at 1538.

\(^5\) Chan et al., supra note 50, at 601.
that are more likely to pass clinical trials.\(^{58}\) AI systems can also bring the traditional number of screened compounds from one million to several billion, while decreasing the time it takes to screen such compounds from several months to a few days.\(^ {59}\)

Big data represents endless opportunities in medicine.\(^ {60}\) However, the sheer volume of data and the velocity with which data becomes available represents serious challenges.\(^ {61}\) In 2016, researchers had access to “nearly 200,000 active clinical trials, 21,000 drug components, 1,357 unique drugs, 22,000 genes, and hundreds of thousands of proteins,” as well as more than twenty-four million medical and scientific articles.\(^ {62}\) According to a 2012 study conducted in five universities in the United States, however, faculty members read around twenty-one scholarly articles per month, or an average of 252 articles annually.\(^ {63}\)

In addition to the vast amount of data researchers must be familiar with to keep up-to-date with progress in their field, drug development further requires analysis of existing literature, preclinical study reports, clinical trial data, and patents.\(^ {64}\) No individual researcher is capable of sifting through big data in the amount of time that an intelligent system can. Furthermore, humans are limited in their knowledge; even an expert in a given field will have limited-to-no know-how in another field of expertise.\(^ {65}\)

AI enables researchers to cope with big data and synthesize data from different fields. IBM’s AI system, Watson, reads, reasons, learns and makes inferences from available data, and offers solutions based on its learnings.\(^ {66}\) Watson starts the learning process by accessing the “Watson corpus” database to review available data corresponding to the related field.\(^ {67}\) Separate datasets consisting of external, public, private, and licensed sources

\(^ {58}\) See id. at 592–99.

\(^ {59}\) Id. at 601.

\(^ {60}\) See, e.g., Chen et al., supra note 2, at 689.

\(^ {61}\) Id.

\(^ {62}\) Id.

\(^ {64}\) Chen et al., supra note 2, at 696.

\(^ {65}\) See Hiroaki Kitano, Artificial Intelligence to Win the Nobel Prize and Beyond: Creating the Engine for Scientific Discovery, AI MAG., Spring 2016, at 39, 41–43 (discussing cognitive limitations as they relate to the biomedical sciences, such as the inability of humans to keep up with the vast amount of available data).

\(^ {66}\) Chen et al., supra note 2, at 691–94.

\(^ {67}\) Id. at 691.
exist for each field that Watson is used in, including law, finance, and medicine.\(^68\) Watson also has access to ontologies on genes, proteins, drugs, and diseases,\(^69\) as well as dictionaries and thesauri to ensure it fully understands what it reads.\(^70\)

In one demonstration, it took Watson less than a single minute to process twenty-four million article abstracts and provide researchers with 177 documents mentioning genes connected with multiple sclerosis.\(^71\) It then created a network map, from which researchers could access summaries of relationships between the disease and different genes, and a link to the relevant section of the related article.\(^72\)

IBM and GlaxoSmithKline (GSK) recently carried out a pilot project to demonstrate the ability of Watson to detect insights and relationships from separate domains of data.\(^73\) The aim of the project was to identify any compounds in GlaxoSmithKline’s existing drug portfolio that could potentially be used to treat malaria.\(^74\) Malaria is a disease mostly found in developing countries where investment in R&D for malaria drugs is limited.\(^75\) However, it has been the subject of extensive research, with 60,000 articles in the Medline database referring to the disease.\(^76\)

In the pilot project, Watson was deployed to review this literature, searching for drugs approved for use in humans and statements about efficacy against malaria.\(^77\) Following its literature review, Watson analyzed GSK’s existing drug portfolio to search for drugs with similar chemical structures to drugs that are known for treating malaria.\(^78\) Within one month, Watson came up with fifteen candidates.\(^79\) The company had been carrying out the same research with a team of ten researchers for the last fourteen months.\(^80\) The research team had come up with a similar number of candidates, although half of the candidates Watson identified were not on their list.\(^81\) The project was a clear indication of Watson’s potential to

\(^{68}\) Id.
\(^{69}\) Id. at 696.
\(^{70}\) Id.
\(^{71}\) Id. at 694.
\(^{72}\) Id.
\(^{73}\) Id. at 697–98.
\(^{74}\) Id. at 698.
\(^{75}\) Scott Spangler, ACCELERATING DISCOVERY: MINING UNSTRUCTURED INFORMATION FOR HYPOTHESIS GENERATION 151 (2015).
\(^{76}\) Id.
\(^{77}\) Chen et al., supra note 2, at 698.
\(^{78}\) Id.
\(^{79}\) Id.
\(^{80}\) Id.
\(^{81}\) Id.
outperform human researchers in terms of time spent in the drug discovery process. It also demonstrated Watson’s ability to diversify approaches to resolving presented problems.

Recent years have witnessed an increasing number of similar cases of AI deployment in pharmaceutical innovation. One AI system, which analyzes data from clinical trials and academic articles to find new drug candidates and potential uses for existing drug candidates, took a single week to come up with five drug candidates for the disease ALS. Another AI system analyzed oncological data and discovered a treatment for pancreatic cancer, which is currently in Phase II of clinical trials. Researchers at Carnegie Mellon University used the predictive capabilities of a machine learning system to decrease the number of tests run on new drugs by seventy percent.

Most recently, a machine learning algorithm that can screen over “a hundred million chemical compounds in a matter of days” helped researchers identify a new antibiotic compound that “killed many of the world’s most problematic disease-causing bacteria, including some strains that are resistant to all known antibiotics.” Another AI system helped invent a new compound aimed at treating obsessive-compulsive disorder, which will be the first compound created by AI to be tried on humans. The system...

82 GSK and IBM have yet to publish the outcome of further tests on the candidates offered by Watson in the pilot project.

85 Nelson, supra note 54.

“generate[d] tens of millions of potential molecules, sift[ed] through the candidates and [made] a decision about which ones to synthesize and test,” allowing researchers to test only 350 compounds, one fifth of the normal number of candidates that would need to be tested under the traditional R&D process. The compound is now entering human clinical trials after only twelve months, as opposed to the average 4.5 years.

These are some of the cases that demonstrate AI’s potential to “dramatically lower costs and improve[] performance” in R&D, including pharmaceutical innovation. Patents, and associated exclusivity rights, represent a trade-off between innovation and lower prices resulting from competition. Social costs of the patent system are the most significant in the pharmaceutical industry, as lack of access to pharmaceuticals denies a considerable portion of the world’s population from their most basic of human rights—the right to health. AI’s disruption of pharmaceutical innovation further weakens justifications for pharmaceutical patents, especially for patents on essential medicines.

II. PATENTS IN THE CONTEXT OF AI SYSTEMS AND PHARMACEUTICAL INNOVATION

A. A Brief Primer on Patent Law

A patent grant entitles inventors to a right to exclude others from making, using, offering for sale, or selling their inventions (or in cases of patented processes, any resulting products) throughout the United States, as well as importing these inventions into the United States, during the term of the related patent. The basic principle behind patent law is that patent

91 Id.
92 Cockburn et al., supra note 3, at 7.
holders are granted a limited period of exclusion, during which they can restrain competition from using the patented invention.96

According to the Supreme Court, this right of exclusion is compensation for inventors’ “labor, toil, and expense in making the inventions, and reducing the same to practice for the public benefit.”97 The right to exclude is a quid pro quo for the benefit the public derives from the disclosure and availability of inventions.98 Courts have further ruled that the ultimate goal of the patent system is the public use and disclosure of inventions.99

Patent law is a “one-size-fits-all system,” which does not distinguish inventions and associated rights based on technology.100 Patent law also does not address the problem of balancing incentivization against the need for equitable access. In providing incentives for innovation, the existing system does not differentiate between luxury goods and life-saving drugs, effectively prioritizing private over public interest.

\textbf{B. Evaluating the Costs and Benefits of the Patent System}

The most widely cited justification for patent law is that it provides a method for inventors to reap the benefits of their inventions and recoup R&D investments, which in turn encourages innovation and progress.101 The pharmaceutical industry often claims patents are essential for innovation, as they provide a method for compensating costly R&D associated with drug

\begin{thebibliography}{9}
\bibitem{97} Seymour v. Osborne, 78 U.S. 516, 533 (1870).
\end{thebibliography}
development. However, evidence on how the patent system actually affects innovation is inconclusive.

Economically, patents offer a bargain between the inventor and the general public. The right of exclusion granted to patent holders is aimed at encouraging innovation by preventing imitation by third parties during the patent term. In return, patent holders are required to disclose their inventions to the public. This is the "classic patent trade-off," a quid pro quo for the benefit the public derives from the disclosure and availability of inventions.

Patent law aims to advance social welfare by mandating disclosure of inventions to the public, enabling third parties to access the know-how necessary to make and use the inventions. Public disclosure of inventions

105 Hall, supra note 96, at 568.

106 Id.

also aims to reduce duplicative R&D efforts and serves as guidance for competitors on deciding where to target their R&D investments.110

Whether these benefits of the patent system justify its social and economic costs has been an issue of much debate.111 One significant cost associated with the patent system is that patents can lead to higher prices.112 The right to exclude competitors from introducing alternative products to the market allows patent holders to charge exorbitant prices.113 In the case of pharmaceuticals, prices mostly exceed what is necessary to recoup R&D investments.114

For instance, a 2019 study of ninety-nine cancer drugs approved by the Food and Drug Administration (FDA) showed that high prices allowed pharmaceutical companies to recoup “maximum possible risk-adjusted cost[s]” of R&D within an average of five years, and that these drugs continued to generate significant revenue thereafter, even following expiration of any exclusivity terms.115 Exorbitant prices restrict access for some potential customers, leading to a misallocation of social resources, or

\begin{footnotesize}
110See \textit{WIPO Report on the International Patent System}, supra note 109, at 10 (indicating that the patent system allows dissemination of knowledge and access by the public to such knowledge through disclosure requirements, which in turn decreases duplicative R&D efforts); FTC \textit{REPORT ON COMPETITION AND PATENT LAW}, supra note 102, at 1, 4 (indicating that representatives of the pharmaceutical and biotechnology industries use disclosures to direct their R&D efforts, while generic manufacturers use disclosures to “design-around” patented pharmaceuticals to avoid infringement).

111See, e.g., \textit{WIPO Report on the International Patent System}, supra note 109, at 78–81 (indicating that the patent system has been a subject of skepticism and providing an analysis of the issues concerning health); Gifford, \textit{supra} note 101, at 78 (indicating that pharmaceutical patents are “on the forefront of controversies” about their effects on “pricing and exclusion”).

113MERGES ET AL., \textit{supra} note 112, at 13; see Gifford, \textit{supra} note 101, at 83; see also Hemel & Larrimore Ouellette, \textit{supra} note 112, at 312.

114See LANDES & POSNER, \textit{supra} note 101, at 296.

115Kiu Tay-Teo et al., \textit{Comparison of Sales Income and Research and Development Costs for FDA-Approved Cancer Drugs Sold by Originator Drug Companies}, [J]AMA \textit{NETWORK 1} (Jan. 4, 2019), https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2720075 [https://perma.cc/EYH6-6V5Q].
\end{footnotesize}
a so-called “deadweight loss.” Deadweight loss is particularly concerning in the case of pharmaceuticals, as lack of access poses health risks.

Another significant cost of the patent system is that it indirectly encourages innovation in larger markets, leading to a misallocation of R&D efforts. The current system encourages patent holders to maximize the revenue generated from their patents and does not duly incentivize innovation in areas where there is less market demand. In the pharmaceutical industry, this results in redirection of R&D funds away from products that may better serve the needs of society.

Wasteful rent-seeking is another important cost of the patent system. Innovating companies compete with each other, invest heavily, and sometimes waste resources in a “patent race” to become the first to file a patent. Rent-seeking within the patent system may result from a race to obtain patents, both during patenting and preceding R&D processes, which may cause competing parties to over-invest. In the case of pharmaceuticals, excessive investments arising from patent races translate to higher costs for consumers.

118 See Outterson, supra note 117, at 218.

119 Gifford, supra note 101, at 82.

121 LANDES & POSNER, supra note 101, at 17; Barnett, supra note 101, at 1269.

123 Dam, supra note 116, at 251.

124 Outterson, supra note 117, at 218.
Lastly, patents limit access to knowledge and inventions. The patent system hinders subsequent innovation by restricting access to knowledge, data, materials, and processes necessary for research. As the number of patents innovators need to take into account increases, probability of follow-up innovation decreases, indicating that the system set up to incentivize innovation discourages it by imposing additional costs and hurdles to R&D.

C. Patents and Exclusivity in the Pharmaceutical Industry

1. The Human Right to Health Care

Several international organizations and instruments recognize health as a human right. The Universal Declaration of Human Rights provides that every individual has the right to health, which includes the right to medical care. The World Health Organization’s (WHO) Constitution similarly acknowledges enjoyment of “the highest attainable standard of health” as a fundamental human right.

The United Nations recognizes the right of all individuals to the “enjoyment of highest attainable standard of physical and mental health” and defines health as a “fundamental human right indispensable for the exercise of other human rights.” According to the International Covenant on Economic, Social and Cultural Rights (the “Covenant”), states must take steps to realize this right, including steps to ensure treatment of diseases.

While the Covenant is directly applicable only to states, and not private parties, the United Nations Committee on Economic, Social and Cultural Rights. R. Stiglitz, supra note 120, at 1710; Roin, supra note 116, at 1023; Nat’l Rsch. Council of the Nat’l Acads., Reaping the Benefits of Genomic and Proteomic Research 136 (Stephen A. Merrill & Anne-Marie Mazza eds., 2006).

125 Gold et al., supra note 101, at 1.

126 See Boldrin & Levine, supra note 122, at 1255 (asserting that “the probability of innovation under monopoly is smaller than that under competition and drops towards zero” as the number of rights that innovators need to take into account increases and that the “additional incentive for innovation under an intellectual property regime is more than completely offset by the additional cost” in such cases); Barnett, supra note 101, at 1269 (referring to “restricted access to the patented good by subsequent improvers” as one of the costs of the patent system).

127 See, e.g., Universal Declaration of Human Rights, supra note 17, art. 5; ICERD, supra note 17, art. 5; WHO Constitution, supra note 17, pmbl.

128 Universal Declaration of Human Rights, supra note 17, art. 25.

129 WHO Constitution, supra note 17, at 1.

132 See id. ¶ 16.
Rights (the “Committee”) declared that all members of society, including private businesses, have responsibilities in achieving the level of health foreseen by the Covenant. The Committee proposed that states facilitate the realization of these responsibilities by such means as enacting framework laws.

The patent system directly affects realization of health care as a human right. It enables higher prices, which effectively restrict access to essential medicines. It also encourages investment in larger markets and fails to provide sufficient incentives for socially valuable pharmaceutical inventions. A successful system should incentivize innovation while advancing health as a human right. The current patent system must thus be reformed to recalibrate the balance between access and incentivization, and public and private interest.

2. Comparing Pharmaceutical Prices in the United States and Other Countries

Facing criticism over exorbitant prices and monopolistic pricing practices, pharmaceutical companies claim that high average returns are necessary to incentivize pharmaceutical R&D, given its high-risk nature.
Yet, with pharmaceutical companies ranking among the most profitable,140 pharmaceutical prices have sparked controversy throughout the years.141

According to a study based on data from 2013 to 2016, the United States has a higher per capita spending on health care than any other country.142 The study found that pharmaceutical spending per capita in the United States was $1,443, where the mean for all countries under investigation was $749.143 Prices in the United States for four common drugs ranked higher than all of the other countries analyzed in the study, with the prices of three of these drugs more than doubling the next highest price on the list.144

A 2018 study by the U.S. Department of Health and Human Services had similar results.145 The study compared the prices for twenty-seven physician administered non-retail drugs covered by the Medicare Part B program with prices in sixteen other countries.146 The researchers found that Medicare paid almost twice as much as it would have paid for the same or equivalent drugs as it would in any other country included in the study.147

3. Understanding Cost of Pharmaceutical R&D in the United States

A frequently cited 2003 study estimated the average out-of-pocket cost (i.e., the actual cash spending) of R&D for each FDA-approved new drug at $403 million, and the capitalized cost at $802 million (in 2000 dollars).148

141 Scherer, supra note 15, at 97; Scherer, supra note 51, at 927; Gifford, supra note 101, at 78; Joseph, supra note 138, at 427–28.

142 The study compared the United States to ten high income countries (United Kingdom (including England, Scotland, Wales, and Northern Ireland), Canada, Germany, Australia, Japan, Sweden, France, Denmark, the Netherlands, and Switzerland) and analyzed data in such domains as general spending, structural capacity, labor costs, and pharmaceutical spending. Papanicolas et al., supra note 12.

143 Id.

144 The study compared the prices of the pharmaceuticals Crestor, Lantus, Advair, and Humira. Id. at 1031.

146 Id. at 5–6.

147 Id. at 8–12.

148 Joseph A. DiMasi, Ronald W. Hansen & Henry G. Grabowski, The Price of Innovation: New Estimates of Drug Development Costs, 22 J. Health Econ. 151, 180 (2003) [hereinafter DiMasi 2003]. The most recent study by the same scholars indicates that the total out-of-pocket R&D cost for each new
While the industry asserts the numbers represent a good measure of its R&D costs, the study has been widely criticized.149 One significant issue with the study is that it does not rely on public and market-wide data but relies on undisclosed data from only ten pharmaceutical companies.150 Critics also question the participating companies’ calculation of R&D costs.151 Some commentators criticize the lack of clarification as to what expenditures are included within the scope of R&D costs,152 while others argue that the final number is inflated due to the inclusion of marketing expenditures, which is not traditionally accepted as an item under R&D costs.153 Another important factor is that the study does not differentiate between successful and failed drugs154 and divides the total amount of R&D costs only by the number of drugs that successfully obtain marketing approval from the FDA.155 The study was criticized for its limited focus on new molecular entities (i.e., drugs that contain an active substance not previously approved for marketing), as opposed to improvement drugs, which are less costly to develop.156

A critique of the study underlines that both R&D time and investments vary substantially from one drug to another, and the cost of research is compound approved by the FDA is $1,395 million, while the capitalized R&D cost per approved new compound is $2,558 million, in 2013 dollars. These numbers increase to $1,861 million and $2,870 million, respectively, once the R&D costs incurred after the FDA approval are added. See Joseph A. DiMasi, Henry G. Grabowski & Ronald W. Hansen, \textit{Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs}, 47 J. HEALTH ECON. 20, 26–27 (2016) [hereinafter DiMasi 2016]. Compared to the 2003 study, estimated out-of-pocket expenses increased by 166 percent, while estimated capitalized costs increased by 145 percent. \textit{Id.} at 31. The scholars reasoned that the increase resulted from higher real out-of-pocket costs, as well as higher failure rates in human-subject testing. \textit{Id.}

149 The comments cited here relate to both the 2003 and the follow-up 2016 studies.

150 DiMasi 2003, \textit{supra} note 148, at 156; DiMasi 2016, \textit{supra} note 148, at 22.

151 In addition to the issues raised here, one commentator argued that R&D costs are high because pharmaceutical companies pay excessive marketing fees to researchers and doctors for their support in clinical trials and lobbying activities and base their choices for research locations not on cost-minimization, but on an attempt to maximize their political influence. Baker, \textit{supra} note 120, at 8–15.

152 Light & Warburton, \textit{supra} note 15, at 5 (indicating that the costs taken into account by the companies in calculating R&D costs are not clear, and that large and indirectly related costs (e.g., cost of land and buildings used not only in relation to the R&D activities, cost of company-wide software or hardware upgrades, legal expenses for developing patent protection, and legal defense against challenges, etc.) are often indicated as R&D costs by pharmaceutical companies).

153 Burk & Lemley, \textit{supra} note 104, at 1616 n.131.

155 CONG. BUDGET OFF., \textit{supra} note 140, at 19; Emily Marden, \textit{Open Source Drug Development: A Path to More Accessible Drugs and Diagnostics?}, 11 MINN. J.L. SCI. & TECH. 217, 234 (2010).

“unknown and highly variable.” The critique indicates a significantly lower amount of $43.4 million as a more realistic R&D cost per new drug.

D. Patentability of AI Systems and AI-Generated Inventions

Two issues lie at the intersection between AI and patents. The first issue is the patentability of AI systems, and the second is the patentability of inventions generated by these systems. For the purposes of patentability both in the United States and other jurisdictions, AI systems are treated as software inventions. However, given the potential economic, social and ethical impacts of these systems, some commentators argue that their patentability should be evaluated separately from other kinds of software inventions. Essential medicines enabled by AI must be subject to different standards of patentability due to similar considerations. The importance of access to essential medicines in ensuring that the human right to health is enjoyed by all and AI’s disruption of pharmaceutical innovation, requires a higher bar of patentability for essential medicines enabled by AI.

The role of AI systems in the innovation process varies from one invention to another. In some cases, AI systems assume the role of assistance tools, aiding inventors in performing certain tasks, like a calculator or a computer. In other cases, AI systems act autonomously, carrying out all steps of the invention process without human intervention.

Questions of patentability arise where the role of AI systems increases in the innovation process and human involvement and direction diminish. A number of issues need to be resolved in order to answer the question of whether inventions created by AI can and should be eligible for patent

158 Id. at 43–47.
159 In the United States, software can be patented provided that the claim passes the Alice-Mayo test, which requires courts to identify the abstract idea in a claim and assess whether the claim adds “significantly more” to it. See Mayo Collaborative Servs. v. Prometheus Lab’ys Inc., 566 U.S. 66, 73 (2012); Alice Corp. v. CLS Bank Int’l, 573 U.S. 208, 215 (2014); NARD, supra note 109, at 221–32. In Europe, the European Patent Office (EPO) responded to the rapid growth in the use of AI by issuing guidelines concerning examination of AI inventions. According to the guidelines, AI and machine learning “are per se of an abstract mathematical nature,” even if they can be trained, and AI inventions are not patentable, absent the use of technical means. See EUR. PAT. OFF., GUIDELINES FOR EXAMINATION IN THE EUROPEAN PATENT OFFICE pt. G, ch. II-5, § 3.3.1 (2018), http://documents.epo.org/projects/babylon/eponet.nsf/0/2A358516CE34385CC125833700498332/$File /guidelines_for_examination_2018_hyperlinked_en.pdf [https://perma.cc/KF5G-PU9W].
protection. The issues, most of which are also raised in the United States Patent and Trademark Office’s (USPTO) Request for Comments on Patenting Artificial Intelligence Inventions, include the legal definition of inventorship, interpretation of the patent eligibility standard of obviousness, and the need for incentivization.

The issue of whether AI-enabled inventions require incentivization relates directly to economic justifications of patent law. The purpose of the patent system is to incentivize innovation, and it is uncertain whether automated inventions also require incentivization. While it is clear that AI systems themselves do not need any incentivization to innovate, some commentators argue that the patent system should expand to inventions created by AI, as patents provide the necessary incentives for developers of these systems.

162 The Request for Comments refers to “inventions that utilize AI, as well as inventions that are developed by AI” as AI inventions, and seeks answers to the following questions: . . .
2. What are the different ways that a natural person can contribute to conception of an AI invention and be eligible to be a named inventor? . . .
3. Do current patent laws and regulations regarding inventorship need to be revised to take into account inventions where an entity or entities other than a natural person contributed to the conception of an invention?
4. Should an entity or entities other than a natural person, or company to which a natural person assigns an invention, be able to own a patent on the AI invention? . . .
5. Are there any patent eligibility considerations unique to AI inventions?
6. Are there any disclosure-related considerations unique to AI inventions? . . .
7. How can patent applications for AI inventions best comply with the enablement requirement, particularly given the degree of unpredictability of certain AI systems?
8. Does AI impact the level of a person of ordinary skill in the art? If so, how? For example: Should assessment of the level of ordinary skill in the art reflect the capability possessed by AI?
9. Are there any prior art considerations unique to AI inventions?
10. Are there any new forms of intellectual property protections that are needed for AI inventions, such as data protection?

163 See Fraser, supra note 3, at 325–28 (discussing issues arising from incentivizing “automated invention[s]” through the patent system); see also Shlomit Yanisky Ravid & Xiaoqiong Liu, When Artificial Intelligence Systems Produce Inventions: An Alternative Model for Patent Law at the 3A Era, 39 CARDOZO L. REV. 2215, 2240 (2018) (asserting that only people, not AI systems need incentives to innovate).

A second issue raised by the increasing use of AI in the innovation process is whether the obviousness standard of patentability must be reevaluated. The issue of obviousness is particularly important as it relates not only to inventions created autonomously by AI systems but also to inventions enabled by these systems.

In order to be eligible for patent protection, inventions must be non-obvious.165 The Patent Act references a notional “person having ordinary skill in the art” (PHOSITA) in determining whether an invention is obvious.166 An invention is not eligible for patent protection if the difference between the invention and related prior art is obvious to PHOSITA.167 PHOSITA varies based on the invention, the field of related art, and the level of education of those active in the related field.168 Certain fields, such as pharmaceuticals, will likely require a higher skill level.169 In any case, the more sophisticated the PHOSITA becomes, the more likely a new invention will be deemed obvious.170 Once a legal fiction, developments in technology have made an entity with full knowledge of prior art a reality.171 Some commentators thus advocate for redefining the concept of PHOSITA and the standard of obviousness.172

The final, and perhaps most important question raised by inventions created by AI systems is whether these systems can be deemed as inventors under the existing patent system. Neither the Patent Act nor the USPTO has
an explicit prohibition against patentability of AI-generated inventions.173 That said, the Patent Act defines inventor as the “individual . . . who invented or discovered the subject matter of the invention,”174 and failure to correctly indicate inventorship may result in invalidity of the patent.175 Accordingly, the requirement that individuals be inventors would not only prevent AI systems from holding patent rights but also the patentability of the resulting inventions.

A recent significant development in this area involves patent applications for two inventions created autonomously by an AI system, which listed the system itself as the inventor.176 The system, called DABUS, uses neural networks and general information in a given field to formulate problems and create novel solutions without human intervention.177 It does not need to be trained or tasked with solving particular problems; it is capable of identifying problem areas and offering solutions completely autonomously.178

The system’s creator and a team of experts applied for patents in the United States, the European Union, and the United Kingdom, as well as under the Patent Cooperation Treaty, for two inventions created by DABUS.179 The applications marked the first time an AI system, not its creator, was listed as the inventor.180 The USPTO, as well as the European Patent Office (EPO) and the United Kingdom Intellectual Property Office (UKIPO), discussed the issue of inventorship in their responses to the applications.

173 The U.S. Copyright Office, on the other hand, explicitly requires human authorship for a work to be copyrightable. According to the Copyright Office, any work “produced by a machine or mere mechanical process that operates randomly or automatically without any creative input or intervention from a human author” will not be protected under copyright. See U.S. COPYRIGHT OFF., COMPENDIUM OF U.S. COPYRIGHT OFFICE PRACTICES § 313.2 (3d ed. 2017), https://www.copyright.gov/comp3/docs/compendium.pdf[https://perma.cc/ZTC9-U6WF].

174 35 U.S.C. § 100(f).

175 NARD, supra note 109, at 866.

177 Id.; see generally IEI’s Patented Creativity Machine® Paradigm, IMAGINATION ENGINES, http://imagination-engines.com/iei_cm.php [https://perma.cc/UHE8-SKS6].

178 See Patent Applications, supra note 176.

179 The two inventions are a beverage container that provides better grip, allowing easier transportation, and an alarm signal that more effectively attracts attention. Id.

180 Other AI systems, such as the Invention Machine, have autonomously created patentable inventions before, but the patents have been issued to the creator of the system. See, e.g., Jonathan Keats, John Koza Has Built an Invention Machine, POPULAR SCI. (Apr. 19, 2006), https://www.popsci.com/scitech/article/2006-04/john-koza-has-built-invention-machine/ [https://perma.cc/KM63-GSGU]; U.S. Patent No. 6,847,851 (filed July 12, 2002).
The USPTO responded to the application with a Notice to File Missing Parts of Nonprovisional Application, due to the applicant’s failure to “identify each inventor by his or her legal name.” The USPTO’s final decision on the applicant’s petition to vacate the notice discussed the issue of inventorship and machine inventors in detail. The decision underlined that the legal definition of invention under Section 100(a) of the Patent Act refers to an “individual,” and that by using such wording as “whoever invents or discovers” in Section 101 and pronouns “himself” and “herself” in Section 115, the Patent Act suggests that inventors must be natural persons. The USPTO noted that “patent statutes preclude such a broad interpretation” to construe the term inventor to cover machines. The decision went on to explain that the idea of human inventorship is further supported by several Federal Circuit decisions, Title 37 of the Code of Federal Regulations, as well as the Manual of Patent Examining Procedure.

The EPO similarly rejected the applications on the grounds that they failed to “meet the requirement of the [European Patent Convention] that an inventor designated in the application has to be a human being, not a machine.” In its decisions, the EPO pointed out that AI systems lack legal personality and thus cannot have rights that arise from being an inventor. The EPO also declined the applicants’ assertion that they should acquire the rights associated with the patent as DABUS’s employers, asserting that AI systems “can be neither employed nor can they transfer any rights to a successor in title.” Similarly focusing on inventorship issues, the UKIPO concluded that the application did not include a proper statement of

182 DABUS Application, supra note 181, at 4.

183 See id. at 4–6.

186 App. No. 18 275 163.6, supra note 186, ¶ 30.
inventorship, and accepted the applications withdrawn accordingly. In its evaluations, the UKIPO ruled that as “DABUS is a machine and not a natural person, . . . it cannot be regarded as an inventor.”

E. The Need for Reform

The pharmaceutical industry asserts that robust patent protection is required for innovation and that the current system helps reimburse the unpredictable, costly and lengthy R&D processes associated with drug development. The ultimate goal of the patent system is to provide incentives for innovation for the benefit of the public. However, studies on whether the patent system has a positive impact on innovation are inconclusive.

Moreover, social costs of the patent system, especially as they relate to access, are particularly concerning in the case of pharmaceuticals. Pharmaceuticals are different from other products, as their consumption is mostly based on need, as opposed to choice. Users of pharmaceutical products are not consumers in the traditional sense of the word. They are patients who depend on the products for purposes of treatment and health care. Lack of access to certain drugs thus poses a risk to the health and

189 Id. ¶ 20.

190 See FTC REPORT ON COMPETITION AND PATENT LAW, supra note 102, at 1, 4, 9; Eisenberg, supra note 102, at 346, 350; Kuhlkin, supra note 102, at 94–99; Light & Warburton, supra note 15, at 1–2; Roin, supra note 15, at 510–511; Scherer, supra note 15, at 103; Rowland, supra note 102.

191 Merges et al., supra note 112, at 13, 17; Lemley, supra note 11, at 1031.

192 WIPO Report on the International Patent System, supra note 109, at 9–10 (indicating that it is difficult to assess the effectiveness of the patent system on innovation due to a lack of conclusive empirical evidence); Baker, supra note 120, at 11 (indicating that it is not clear that the patent system is “the most efficient way to direct research”); Hahn, supra note 107, at “Executive Summary” (reviewing literature on “the role of patent strength in spurring innovation, diffusing information, transferring technology, speeding commercial development of inventions, and stimulating economic growth,” and concluding that there is no clear answer to the question of appropriate scope and duration of patent rights); Sakakibara & Branstetter, supra note 103, at 78 (concluding that the Japanese patent reforms strengthening patent protection did not result in increased R&D efforts and innovation output).

193 Sachs, supra note 117, at 161 (asserting that in the case of pharmaceuticals, deadweight loss may put patients’ lives at stake); Gifford, supra note 101, at 123–24 (indicating that deadweight loss is large in the pharmaceutical industry on a global scale); Flynn et al., supra note 117, at 186 (indicating that deadweight loss has added significance for drugs essential to life and health); Outterson, supra note 117, at 201–02 (discussing the social cost of pharmaceutical patents, and indicating that higher prices hinder medical access).

194 Joseph, supra note 138, at 436.

195 See David Henry & Andrew Searles, Pharmaceutical Pricing Policy, in MANAGING ACCESS TO MEDICINES AND HEALTH TECHNOLOGIES 9.1, 9.6 (Martha Embrey & Marian Ryan eds., 2012).

196 Joseph, supra note 138, at 436.
lives of individuals. As such, balancing access and incentivization is particularly important in the pharmaceutical industry.

While pharmaceutical companies are for-profit entities, the nature of their products begs the question of whether a different approach should be adopted towards their products. Under the current system, pharmaceutical companies use exclusivity rights to charge exorbitant prices. The human right to health care cannot be achieved without proper access to essential medicines. The next Part proposes models that maintain the benefits of the patent system without compromising access to essential medicines.

III. Recalibrating Access and Incentivization

The patent system, and the intellectual property regime in general, is one of the many available models aimed at incentivizing innovation. Government incentives such as prizes and grants currently complement patents in fields of research where additional incentivization is necessary. Many countries also rely on tax incentives to increase R&D activity. The United States offers tax incentives for research and experimental expenditures, as well as R&D tax credits, including a credit for pharmaceutical companies engaged in orphan drugs research. While prizes and grants directly contribute to R&D funds, tax incentives decrease R&D costs.

197 See Sachs, supra note 117, at 161; Flynn et al., supra note 117, at 186; Outterson, supra note 117, at 202.
198 MERGES ET AL., supra note 112, at 13; Gifford, supra note 101, at 83; Hemel & Larrimore Ouellette, supra note 112, at 312.
200 Hemel & Larrimore Ouellette, supra note 112, at 316.
202 Orphan diseases are those that affect fewer than 200,000 people in the United States. A disease may also be categorized as an orphan disease if it affects more than 200,000, but there is no reasonable expectation that the cost of developing and offering the drug in the market would be recovered from sales. 21 U.S.C. § 360bb(a)(2).
204 Hemel & Larrimore Ouellette, supra note 112, at 311. There are at least two other incentives that are particularly important for the pharmaceutical industry. Under advance market commitments (AMCs),
In recent years, costs associated with the patent system have increased interest in alternative incentive methods.\(^{205}\) “[S]trong public interest” in access\(^{206}\) has led to a number of proposals specific to the pharmaceutical industry. These proposals include a global R&D treaty\(^{207}\) and a national medical innovation prize fund,\(^{208}\) both relying on a portion of the gross domestic product (GDP) to fund R&D in the health care industry.\(^{209}\) The models proposed in the following section rely on funding through similar mechanisms to accommodate innovating companies in the absence of patent rights.

A. Main Considerations

1. Different Approaches to Essential and Non-Essential Medicines

In evaluating access to pharmaceuticals, WHO differentiates between essential and non-essential medicines. Essential medicines are those that must be available at all times in adequate amounts at affordable prices.\(^{210}\) WHO has been publishing essential medicines lists based on current health

\(^{205}\) Baker, supra note 120, at 25; Kremer & Williams, supra note 199, at 1.

\(^{209}\) See sources cited infra note 245.

\(^{210}\) WHO Essential Medicines, supra note 18.
needs since 1977.211 WHO’s periodically updated lists provide a guideline for countries to develop their own lists.212 The latest WHO list includes drugs ranging from antibiotics to drugs used for the treatment of cancer, HIV, and malaria.213

Access to essential medicines is “a key component of the fulfillment of the human right to health.”214 The models here thus focus on essential medicines. The models aim to increase access by reforming patentability standards to leave some essential medicines enabled by AI outside the scope of patentability, or alternatively, decreasing the patent term available for such medicines. Non-essential medicines will remain under the existing system, as they are less likely to have a significant impact on global health. Patents on these medicines will allow innovating companies to freely decide prices in the absence of competitors and help raise funds for future R&D investments.

2. The Path to Patent Law Reform

Congress is limited by the United States Constitution in determining the sphere of patent protection and granting exclusivity for limited terms.215 That said, Congress is free to decide the scope and breadth of intellectual property rights.216 It may impose conditions on patent rights, limit duration, refuse granting privileges, or provide special rights for certain industries, as opposed to employing a uniform intellectual property system.217 As such, Congress has the authority to subject inventions concerning essential medicines enabled by AI to different eligibility standards, as well as to confer a different scope of rights to such inventions.

Nevertheless, any reform to the existing patent system must be compliant with the Agreement on the Trade Related Aspects of Intellectual Property Rights (TRIPS).218 TRIPS requires patentability of all novel, useful, and non-obvious inventions, and prohibits differential treatment based on

211 Id.
212 Frederick Abbott et al., Global Health Law, 77 Int’l L. Ass’n Rep. Conf. 203, 210 (2016).
214 Id.
215 U.S. Const. art. I, § 8, cl. 8.
217 Id.
Article 27.2 provides an exception to this rule in cases where protection of human life and health require exclusion of patentability. However, the provision indicates that an invention cannot be excluded from patentability based on this exception “merely because the exploitation is prohibited by . . . law.”

The models proposed here do not exclude pharmaceuticals from patentability in general but merely change the standard of patentability, or alternatively the exclusivity period, for essential medicines enabled by AI with an aim to ensure wider access to pharmaceuticals. There is thus an argument to be made that the proposed law reforms fall within the scope of the exception. However, the best course of action is to urge the World Trade Organization to recognize the right of countries to subject essential medicines enabled by AI to different standards.

3. Regulatory Exclusivity Conferred by the FDA

In addition to patents, FDA regulations provide two types of regulatory exclusivities for certain groups of pharmaceuticals. The first type, market exclusivity, prohibits the FDA from granting marketing approval to substitute drugs within the exclusivity period; while the second type, data exclusivity, prohibits competitors from relying on innovator company data to receive marketing approval but allows approval of drugs that rely on the competitor’s own data. To allow the proposed law reforms to have their full effect and maximize access to essential medicines, Congress must also abolish these marketing and data exclusivity practices.

219 Id. art. 27.1.
220 Id. art. 27.2.
221 Id.
222 A similar proposal has been made before by International Law Association’s Global Health Law Committee. See Abbott et al., supra note 212, at 216 (proposing that the UN General Assembly adopt a resolution to urge the World Trade Organization (WTO) Ministerial Conference to “provide an authoritative interpretation of articles 27 and 30” that allows member states to exclude essential medicines from patentability).
B. Rethinking Patent Law for Essential Medicines Enabled by AI

Pharmaceutical patents are relatively new in many countries. France, Germany, Switzerland, and a number of other jurisdictions did not allow patent protection for pharmaceutical products until after the mid-1900s. Before TRIPS, over forty countries did not protect pharmaceutical products under a patent regime. While these countries issued patents for manufacturing processes, third parties were allowed to produce the same product through different, unpatented processes.

This pre-TRIPS model may be ideal where the ultimate aim is to maximize access. However, renouncing incentivization in favor of access is an unrealistic approach given the industry’s overemphasis on its reliance on the patent system. The models proposed in this Article thus aim to maintain the benefits of the patent system and increase access to essential medicines.

1. Reforming Patent Eligibility Standards

Redefining standards of patentability and patentable subject matter, to leave essential medicines enabled by AI outside the scope of the patent system will increase access by ensuring a competitive market, which will drive prices down. In this model, non-essential medicines will still be entitled to patent protection, provided that the invention satisfies existing requirements for patent eligibility. Innovating companies will similarly be entitled to patent protection if they can demonstrate that their R&D processes do not rely on AI systems.

The reform will be accompanied by a ten-year transition period where an otherwise ineligible essential medicine will be entitled to patent protection if (i) documentation from the FDA shows it to be more effective than alternative products in the market, or (ii) if the innovating company demonstrates the associated R&D costs to be considerably higher than industry average. A similar system of exceptions is proposed by F. M. Scherer, who proposes shortened patent terms except in cases where first mover advantages are not sufficient or the related firm is small and has a limited market, or an individual request is made based on a number of claims, including extraordinarily high R&D costs compared to the relevant industry.

225 BOLDRIN & LEVINE, supra note 140, at 215–18; DUTFIELD, supra note 120, at 127–28.
226 WTO and the TRIPS Agreement, WORLD HEALTH ORG. [WHO], https://www.who.int/medicines/areas/policy/wto_trips/en/ [perma.cc/P8SB-S4HJ].
228 See FTC REPORT ON COMPETITION AND PATENT LAW, supra note 102, at 1, 4, 9; Kuhlkin, supra note 102, at 94–99; Eisenberg, supra note 100, at 346, 350; Light & Warburton, supra note 15, at 1–2; Roin, supra note 15, at 510–11; Scherer, supra note 15, at 103; Rowland, supra note 102.
229 A similar system of exceptions is proposed by F. M. Scherer, who proposes shortened patent terms except in cases where first mover advantages are not sufficient or the related firm is small and has a limited market, or an individual request is made based on a number of claims, including extraordinarily high R&D costs compared to the relevant industry. See F. M. Scherer, First Mover Advantages and Optimal Patent Protection 13–14 (Harv. Kennedy Sch. Mossavar-Rahmani Ctr. for Bus. & Gov’t, Working Paper No. RPP-2015-05, 2015),
The first exception will aid in directing R&D efforts to inventions with potential for more social value. Under the second exception, innovating companies investing heavily in their R&D processes, such as those developing in-house AI systems, will be entitled to patent protection for both essential and non-essential medicines. Through these exceptions, the new system will retain some of the incentives available under the current regime for a period of ten years. This transition period will allow for observation of the new system and for adjustment of its application if necessary.

2. **Shorter Exclusivity Term for Essential Medicines Enabled by AI**

An alternative model is to maintain the existing rules and standards of patentability and shorten the exclusivity term for essential medicines enabled by AI to five years.²³⁰ The five-year term will commence on the earlier date of marketing approval by the FDA or date of marketing. Upon expiration of the five-year exclusivity term, third parties will be entitled to manufacture and sell the patented product against a royalty to be paid throughout the patent term.²³¹ Similar to the first model, non-essential medicines, as well as

²³⁰ A study analyzing R&D profitability for different market conditions and patent terms concluded that R&D investment is profitable under most market conditions regardless of patent term. *See id. at 5–8.* The study indicated that the patent system aids innovation most significantly in smaller markets and that short patent terms affect R&D investment decisions only in such markets and offered a five-year patent term as an efficient alternative to the existing system. *Id. at 6–7, 13.*

²³¹ As opposed to compulsory licensing under the TRIPS Agreement, the parties will not be required to negotiate licensing conditions in advance. Scholars have entertained the idea of similar systems, where third parties would be entitled to use inventions or related data upon payment of a compensation to the innovator during a predetermined period. *See J. H. Reichman, Of Green Tulips and Legal Kudzu: Repackaging Rights in Subpatentable Innovation, 53 VAND. L. REV. 1743, 1744–98 (2000) (proposing a “compensatory liability regime” for sub-patentable inventions, such as databases, where the amount of compensation would be negotiated between the parties on a case-by-case basis, with the option to resort to arbitration in case of failure to reach an agreement or where contribution would be determined based on predetermined percentages of the third party’s gross revenue depending on how significant use of the original invention is in the subsequent product); James Love & Tim Hubbard, Prizes for Innovation of New Medicines and Vaccines, 18 ANNALS HEALTH L. 155, 180–86 (2009) (discussing a compensatory liability system, which can range from a mandatory compulsory license to less stringent applications, allowing third parties to use the invention upon payment of appropriate remuneration); Lea M. Gulotta, Pharming Out Data: A Proposal for Promoting Innovation and Public Health through a Hybrid Clinical Data Protection Scheme, 51 VAND. J. TRANSnat’l L. 1469, 1503–04 (2018) (proposing one-year regulatory data exclusivity for all pharmaceuticals, followed by four years of cost-sharing with subsequent users of related data); Aaron Xavier Fellmeth, Secrecy, Monopoly, and Access to Pharmaceuticals in International Trade Law: Protection of Marketing Approval Data under the TRIPs Agreement, 45 HARV. INT’L L.J. 443, 482–99 (2004) (proposing a system where generic manufacturers can use data from brand-name manufacturers upon payment of a compensation in proportion to the benefit they obtain from using such data, and providing a formula which can be altered based on market conditions, in terms of length of time during which the brand-name manufacturer is entitled to royalties, maximum number of competitors required to pay royalties, and interest rate to account for the time value of money).
inventions by companies which do not rely on AI in their R&D processes, will enjoy the current twenty-year exclusivity period. This reform will also similarly be accompanied by a ten-year transition period with exceptions for more effective drugs and R&D costs exceeding the industry average.

The most important aspect of this model is to adopt a fair and efficient royalty scheme. Royalties will be determined based on the total cost of R&D, which the innovating company will submit to the USPTO during the patent application process, and shared by the licensees wishing to manufacture and sell the product. The contribution of each licensee may be determined based on the markets where it plans to offer the product, or the total cost may be shared equally by all licensees.

Under the former scheme, the license will be liable for ten percent of the total costs to sell the product in a market that represents ten percent of the global market. In the latter, the total cost will be divided equally between the licensees, and the amount of royalties owed will decrease with new licensees. The maximum amount of compensation the innovating company can receive may be limited to the total cost of R&D or to a predetermined multiple of this amount.

C. Evaluating the Potential Effects of Proposed Law Reforms

There are multiple advantages to the models proposed in this Article. In the first model, absence of exclusivity rights will enable competitors to enter the market as soon as the innovating company makes the drug available to the market. In the second model, a shortened exclusivity term will allow competitors to enter the market in the relatively shorter period of time of five years. In both cases, increased competition will bring down prices. In practice, this will translate into more people having access to essential medicines.

By removing the restrictions on access to inventions by competitors and innovators in other fields, the proposed models will also have a positive impact on subsequent innovation.

232 What items fall under R&D costs should be defined by the USPTO and the FDA, following consultations with the industry.

233 For a similar method, see Gulotta, supra note 231, at 1503–04 (discussing a “pro rata data exclusivity and cost sharing” model).

234 For a similar method, see Fellmeth, supra note 231, at 481–82 (discussing a “simple division royalties model”).

235 For a discussion of high prices limiting access to pharmaceuticals, see Gifford, supra note 101, at 83, 102 n.118; see also Dam, supra note 116, at 247; Barnett, supra note 101, at 1269; Burstein & Murray, supra note 116, at 410; Roin, supra note 116, at 1023–24.

236 For a discussion of the patent system’s effects on subsequent innovation, see Outterson, supra note 117, at 201–02; Stiglitz, supra note 120, at 1710; Roin, supra note 116, at 1023; NAT’L R.SCH. COUNCIL OF THE NAT’L ACADS., supra note 125; Gold et al., supra note 101, at 1; Boldrin & Levine, supra note 122, at 1255.
One drawback is that both models require a determination of what constitutes enablement by AI. The USPTO will need to evaluate eligibility claims on a case-by-case basis and decide whether the role of the AI system amounts to more than a standard tool of research in each case. The models may also raise some concerns regarding incentivization. Especially in the absence of patent rights, innovating companies may shift their focus to non-essential medicines that will still be eligible for patent protection or opt out from using or disclosing their use of AI systems. The models must thus be accompanied by appropriate alternatives to preserve the benefits of the patent system. The incentive methods set forth in the next Section are designed to address these concerns. While these methods are aimed at incentivizing R&D in the absence of patent rights and associated exclusivity periods, they may be extended to the second model as necessary to supplement incentivization through royalties.

D. Incentivizing R&D for Essential Medicines in the Absence of Patents

1. A National Prize Fund

A 2017 bill, the Medical Innovation Prize Fund Act, recently proposed a national prize fund.\(^{237}\) The bill recognized market exclusivity to be an “expensive, inefficient, and unfair mechanism to reward investments in new products”\(^{238}\) and asserted that drug development would benefit from “greater sharing of knowledge, data, materials, and technologies.”\(^{239}\) The bill recommended removing the link between R&D incentives and product prices, claiming that this will allow a dramatic decrease in the costs of innovation and an increase in access to inventions.\(^{240}\) The bill thus proposed to abolish patents and market exclusivity for drugs and biological products, as well as related manufacturing processes,\(^{241}\) and to fund R&D through a national prize fund.\(^{242}\)

This Article similarly proposes a fund with a specific focus on essential medicines. Prizes will be awarded by a board, based on the impact of each drug on global public health,\(^{243}\) and payments will be conditioned upon

\(^{238}\) Id. § 2.

\(^{239}\) Id. § 2(5).

\(^{240}\) Id. § 2(3).

\(^{241}\) Id. § 5.

\(^{242}\) According to the bill, allocating 0.55 percent of the GDP in 2016 would have led to a fund of over $100 billion. Id. § 2(4).

\(^{243}\) In a 2019 Senate hearing, representatives of the pharmaceutical industry indicated that they favored “value-based” reimbursement, which would base compensation they receive from the market on how effective their drugs are. Rowland, supra note 102. For different methods of measuring health
abandonment of patents, if any. In addition to disclosure of all clinical trial data and other information enabling those “skilled in the art . . . to make and use” the invention, eligibility for prizes will require disclosure of all relevant information on the AI system used in the R&D process.

A national prize fund designed in this manner will provide the incentives necessary to sustain essential medicines research. The government will also be in a position to allocate prizes to encourage investment in certain areas over others. For instance, higher prizes may be offered to essential medicines with smaller markets, such as orphan drugs. Prizes for AI-enabled essential medicines will also encourage the use of AI in the innovation process and allow access to data that will build a better understanding of how AI systems work.

2. A Global R&D Treaty

The need to balance access and incentivization has led to calls for a multilateral treaty to finance R&D and break the link between pharmaceutical prices and R&D costs. Most notably, WHO proposed a global R&D treaty where all countries would commit at least 0.01 percent of their GDPs to government funded research focusing on the health needs of developing countries. The United Nations supported the idea of a binding treaty, see AIDAN HOLLIS & THOMAS POGGE, THE HEALTH IMPACT FUND: MAKING NEW MEDICINES ACCESSIBLE FOR ALL 27–34 (2008).

See, e.g., Baker, supra note 120, at 14–15 (proposing a system where countries contribute in proportion to their “comparable levels of development,” with the poorest countries contributing the least or nothing); Comm. on the Env’t, Pub. Health & Food Safety, supra note 207, at 13, 36 (acknowledging that access to medicine is a “shared responsibility of all actors” in the health care industry, and proposing consideration of a R&D financing pool made up of 0.01% of each member state’s GDP); Abbott et al., supra note 212, at 216–21 (proposing a Framework Convention on Pharmaceutical Innovation with an additional protocol on financing); PANTELI & EDWARDS, supra note 207, at 24 (arguing that a pooling financial mechanism is a “necessary first step” for a sustainable global solution to delink R&D costs from prices); Gifford, supra note 101, at 124 (arguing that the American public bears the cost of pharmaceutical R&D more than other nations, as pharmaceutical prices are higher in the United States, and proposing a system of public funding proportionately to each nation’s GDP or per capita income for a more equitable solution). See generally Hubbard & Love, supra note 207, at 0147–50 (proposing a new trade framework requiring countries to contribute a fixed percentage of their GDP and allowing them the freedom to choose granting patents on pharmaceuticals once such contribution is made).

CONSULTATIVE EXPERT WORKING GRP. ON RES. & DEV.: FIN. & COORDINATION, WORLD HEALTH ORG. [WHO], RESEARCH AND DEVELOPMENT TO MEET HEALTH NEEDS IN DEVELOPING COUNTRIES: STRENGTHENING GLOBAL FINANCING AND COORDINATION 84 (2012), http://apps.who.int/iris/bitstream/handle/10665/254706/9789241503457-eng.pdf?sequence=1 [https://perma.cc/2R8M-8VGZ].
R&D treaty focused on de-linking R&D costs from prices in the quest to promote access to pharmaceuticals and incentivize innovation.247

As equal global access requires each country to share the cost of research, a global R&D treaty should accompany the national prize fund. Party states should contribute incrementally based on their respective GDPs, with a certain percentage of the funds raised under the treaty dedicated to essential medicines. To ensure widest possible access, essential medicines that may be entitled to patent protection should be collected under a pool operated by WHO, and made available to third parties against due compensation.248 Any revenue raised by the use of these pharmaceuticals would then be added to the R&D fund under the treaty.

3. Tax Incentives

In the United States, tax incentives related to R&D activities are regulated under both state and federal law.249 At the federal level, Sections 41 and 174 of the Internal Revenue Code regulate tax incentives applicable to R&D in all industries.250 Under Section 174, taxpayers are entitled to treat research and experimental expenditures as expenses subject to certain conditions.251 Credit for increasing research activities, regulated under Section 41, provides a credit against tax for qualified research expenses.252 In addition, Section 45C provides a credit specifically for pharmaceutical companies engaged in R&D for orphan drugs.253

While tax incentives do not result in direct funding of R&D, they decrease the overall cost of R&D.254 Tax deductions and credits are thus a

248 Medicines Patent Pool offers a similar model to increase access to HIV, Hepatitis C, and Tuberculosis medicines in developing countries. See MEDICINES PATENT POOL, https://medicinespatentpool.org/ [https://perma.cc/X5NL-FBFW].

250 26 U.S.C. §§ 41, 174.

251 Id. § 174(a). These expenditures include those incurred in connection with R&D and cover all costs that are incidental to the development or improvement of a product, including the cost of obtaining a patent, such as attorney fees. 26 C.F.R. § 1.174-2(a) (2014).

252 26 U.S.C. § 41(a). Expenses covered under Section 41 include in-house research expenses, as well as a percentage of the amounts incurred as a result of third-party services. Id. § 41(b). The “contract research expenses” are limited to sixty-five percent of any amount paid by the taxpayer to a third party, or seventy-five percent of the amount paid to a qualified research consortium, for qualified research. Id. § 41(b)(3).

253 Id. § 45C. The credit is twenty-five percent of the qualified clinical testing expenses, which are expenditures related to human clinical testing.

254 Hemel & Larrimore Ouellette, supra note 112, at 311.
good method to provide additional incentivization for R&D. In 2018, Section 174 decreased the tax liability of corporations by $2 billion, Section 41 decreased it by $8.9 billion, and Section 45C by $1.1 billion.255

Expenses related to AI systems utilized in R&D likely fall within the scope of one or more of the existing tax incentives.256 This Article offers an additional tax incentive to complement the proposed law reforms in the form of lower income tax for royalties and other profits generated from essential medicines enabled by AI as discussed in the preceding sections.257

CONCLUSION

The patent system is widely criticized for its effect on restricting access and hindering subsequent innovation.258 Effects of patents in the pharmaceutical industry have particularly been the subject of extensive debate.259 Health care is a human right, which cannot be achieved without proper access to medicine.260

AI is revolutionizing pharmaceutical innovation.261 Faster and more efficient R&D enabled by AI weakens justifications for pharmaceutical patents. AI is a “game changer” in the health care industry,262 and the law must keep up to ensure that society reaps the benefits. The principal goal of the law reform proposals herein is to leverage AI’s disruption of pharmaceutical innovation to ensure that the human right to health is enjoyed by all.

257 See Jane G. Gravelle, Cong. Res. Serv., R44522, A Patent/Innovation Box as a Tax Incentive for Domestic Research and Development 6 (2016) (discussing patent box tax incentives, a basis for the proposed model, in such countries as the United Kingdom, France, and China, offering lower income tax for various revenue generated from intellectual property).
259 See, e.g., Heim & Moon, supra note 258, at 143; WIPO Report on the International Patent System, supra note 109, at 78–81; Scherer, supra note 15, at 97; Scherer, supra note 51, at 927; Joseph, supra note 138, at 428; Gifford, supra note 101, at 78.
260 See supra notes 128–138 and accompanying text.
261 See supra Part I.
AI inventions raise questions about patentability and patent policy in general. Recent developments signal that patent law reform is inevitable.263 Considering the lack of evidence on the efficiency of the patent system and health care’s categorization as a human right, the pharmaceutical industry is long overdue for a system that prioritizes access alongside incentivization. AI’s disruption of the innovation landscape gives lawmakers the chance to finally take action.

263 See supra notes 176–189 and accompanying text.